━━━━━━━━━━━━━━━━━━━━━━━━

  簡史

  培養和檢測

  形態、結構和化學組成

   大小與形態

   結構

   化學組成

    蛋白質

    脂質

    糖

  復制

   吸附與進入

   基因表達

   轉錄

   翻譯

   核酸復制

   裝配與釋放

  感染類型和宿主反應

   細胞水平上的感染類型和宿主反應

   機體水平上的感染類型和宿主反應

   致瘤作用

  起源

  分類

━━━━━━━━━━━━━━━━━━━━━━━━

  “virus” 一詞源於拉丁文,原指一種動物來源的毒素。病毒能增殖、遺傳和演化,因而具有生命最基本的特征,但至今對它還沒有公認的定義。最初用來識別病毒的性狀,如個體微小、一般在光學顯微鏡下不能看到、可通過細菌所不能通過的濾器、在人工培養基上不能生長、具有致病性等,現仍有實用意義。但從本質上區分病毒和其他生物的特征是:①含有單一種核酸(DNA或RNA)的基因組和蛋白質外殼,沒有細胞結構;②在感染細胞的同時或稍後釋放其核酸,然後以核酸復制的方式增殖,而不是以二分裂方式增殖;③嚴格的細胞內寄生性。病毒缺乏獨立的代謝能力,隻能在活的宿主細胞中,利用細胞的生物合成機器來復制其核酸並合成由其核酸所編碼的蛋白,最後裝配成完整的、有感染性的病毒單位,即病毒粒。病毒粒是病毒從細胞到細胞或從宿主到宿主傳播的主要形式。

  病毒在自然界分佈廣泛,可感染細菌、真菌、植物、動物和人,常引起宿主發病。但在許多情況下,病毒也可與宿主共存而不引起明顯的疾病。

簡 史

  在發現病毒以前,人們早已開始不自覺地利用病毒為人類服務。中國在16世紀前後,就用天花患者膿瘡中的漿液給健康人接種而使之獲得免疫力。差不多同時,荷蘭的種植者用嫁接法使鬱金香感染病毒而開出美麗的碎色花朵;1796年E.琴納發明瞭牛痘苗;1885年L.巴斯德首創瞭狂犬病疫苗。

  1892年Д.И.伊萬諾夫斯基發現患煙草花葉病的煙葉汁通過阻留細菌的濾器後,仍保留其感染性;1898年M.W.拜耶林克再次發現瞭這一事實,並指出該病是一類與細菌不同的病原體所引起的。這是認識病毒的開端。以後相繼發現許多人類、植物和動物的疾病是由病毒引起的。1898年F.A.J.勒夫勒和P.伏羅施發現瞭牛的口蹄疫病毒;1915年F.W.特沃特和1917年F.埃雷爾分別發現瞭細菌病毒即噬菌體。

  從30年代起開始探索病毒的理化性質,M.施萊辛格提純瞭噬菌體並指出它是由蛋白質和DNA構成的;1935年W.M.斯坦利獲得瞭煙草花葉病毒的結晶;1936年首次在電子顯微鏡下看到該病毒是一種桿狀顆粒。以後許多病毒相繼被提純,對他們的形態結構和化學組分進行瞭研究,為病毒分類提供瞭依據。

  由於病毒的結構和組分簡單,有些病毒又易於培養和定量,因此從20世紀40年代以來,病毒始終是分子生物學研究的重要材料。30年代末,以M.德爾佈呂克為代表的一派學者開始用大腸桿菌的 T偶數噬菌體研究其復制和遺傳機制,奠定瞭分子遺傳學的基礎。70年代起,研究重點逐漸轉向動物病毒。分子生物學發展中的重要進展,如DNA和RNA是遺傳物質的確證,三聯體密碼學說的形成,核酸復制機制的闡明,遺傳信息流中心法則的提出,反轉錄酶、基因的重疊和不連續性等的發現,以至基因工程的興起和致癌理論的發展,幾乎無一不與病毒有關。一些蛋白質和核酸的一級結構分析,也常常是首先以病毒為材料研究完成的。反過來,分子生物學研究又促進瞭對病毒結構、復制和遺傳的認識,使病毒學發展成一門獨立的分支學科。

  在實踐方面,病毒的研究對防治人類、植物和動物的病毒病作出瞭重要貢獻。病毒疫苗的發展,為控制人類疾病(如天花、黃熱病、脊髓灰質炎、麻疹等)和畜禽疾病(如牛瘟、豬瘟、雞新城疫等)提供瞭有效措施;由於綜合防治和抗病育種等措施的利用,有效地控制瞭馬鈴薯退化病、小麥土傳花葉病、白菜蕪菁花葉病等農作物病害;利用昆蟲病毒作為殺蟲劑的研究,也在大力開展並已進入實用階段。

培養和檢測

  病毒研究的發展常常與病毒培養和檢測方法的進步有密切的關系,特別在脊椎動物病毒方面,小鼠和雞胚接種、組織培養、超速離心、凝膠電泳、電子顯微鏡和免疫測定等技術,對病毒學的發展具有深刻的影響。

  噬菌體的培養和檢測方法最為簡單。將噬菌體接種到易感細菌的肉湯培養物中,經18~24小時後,混濁的培養物重新透明,此時細菌被裂解,大量噬菌體被釋放到肉湯中,再經除菌過濾,即為粗制噬菌體。為瞭測定其中噬菌體的數量,將粗制噬菌體稀釋到每一接種量含100個左右,與過量的細菌混合,然後鋪種於瓊脂平皿上,在溫箱中培養過夜,細菌繁殖成乳白色襯底,被噬菌體裂解的區域則在此襯底上表現為圓形的透明斑,稱為噬斑(圖1)。噬斑數代表該接種量中有活力的噬菌體數量。如果挑出單個噬斑來培養,就能獲得由單個噬菌體所繁殖的後代,達到分離純化的目的。

圖1 大腸桿菌λ噬菌體的噬斑

  動物病毒(見脊椎動物病毒)的培養可在自然宿主、實驗動物、雞胚或細胞培養中進行,以死亡、發病或病變等作為病毒繁殖的直接指標,或以血細胞凝集、抗原測定等作為間接指標。收獲發病動物的組織磨成懸液或有病變的細胞培養液,即為粗制病毒。測定活病毒數量可采用空斑法,其原理與噬斑法相同,但以易感的動物單層細胞代替細菌,在接種適當稀釋的病毒後,用含有培養液和中性紅的瓊脂覆蓋,使病毒感染局限在小面積內形成病變區,襯底的健康細胞被中性紅染成紅色,病變區不染色而顯示為空斑(圖2)。

圖2 Hela細胞上脊髓灰質炎病毒的空斑

  至今植物病毒的培養和檢測大都是在整株植物上進行的。從搗碎的病葉汁中制備病毒,常用枯斑法檢測。用手指蘸上混有金剛砂的稀釋病毒在植物葉片上輕輕磨擦,經一定時間後出現單個分開的圓形壞死或退綠斑點,稱為枯斑(圖3)。

圖3 心葉煙上煙草花葉病毒的枯斑

  除瞭利用病毒的致病性定量檢測病毒外,還可應用物理方法,如在電子顯微鏡下計數病毒顆粒,或用紫外分光光度計測定提純病毒的蛋白和核酸量,這些方法所測得的數據包括瞭有感染性和無感染性的病毒粒。

形態、結構和化學組成

  應用電子顯微鏡不但能看清病毒粒的大小、形態,還可以分辨其表面的蛋白亞單位和內部的核殼等超微結構。

  大小與形態 不同病毒的大小變動於20~450納米之間。最大的為痘病毒科,大小為(170~260)×(300~450)納米,最小的為雙聯病毒科,直徑18~20納米。

  病毒的形態也是多樣的:球狀(包括二十面體),如脊髓灰質炎病毒和有包膜的如皰疹病毒;桿狀(包括棒狀),如煙草花葉病毒;絲狀,如甜菜黃花病毒;彈狀,如水皰性口炎病毒;復雜構型,如蝌蚪狀的T偶數噬菌體。有些病毒在細胞內呈自然晶體排列(圖4)。(見彩圖)

噬菌體感染細菌

大腸桿菌質粒DNA

T4噬菌體

腺病毒

  結構 最簡單的病毒中心是核酸,外面包被著1層有規律地排列的蛋白亞單位,稱為衣殼。構成衣殼的形態亞單位稱為殼粒,由核酸和衣殼蛋白所構成的粒子稱為核殼。較復雜的病毒外邊還有由脂質和糖蛋白構成包膜。核殼按殼粒的排列方式不同而分為3種模式:二十面體對稱,如脊髓灰質炎病毒;螺旋對稱,如煙草花葉病毒;復合對稱,如 T偶數噬菌體。在脂質的包膜上還有1種或幾種糖蛋白,在形態上形成突起,如流感病毒的血凝素和神經氨酸酶。昆蟲病毒中有1類多角體病毒,其核殼被蛋白晶體所包被,形成多角形包涵體。

  化學組成 核酸 帶有遺傳密碼的病毒基因組。病毒依所含核酸種類不同可分為DNA病毒和RNA病毒。動物病毒或含DNA,或含RNA;植物病毒除少數組外大多為RNA病毒;噬菌體除少數科外大多為DNA病毒。

  DNA或RNA可以是線型的或環狀的,可以是單鏈的或雙鏈的。RNA可以分節段或不分節段,單鏈RNA又分正鏈的和負鏈的。

  在分節段的RNA植物病毒中,常見多分體基因組,即同一病毒的幾個RNA節段分別裝入衣殼中,形成大小不同的顆粒,有的分裝在兩種顆粒中稱二分體基因組,如豇豆花葉病毒;有的分裝在3種顆粒中稱三分體基因組,如黃瓜花葉病毒和雀麥花葉病毒。

  通過遺傳學和生物化學方法,已查明一些病毒的基因圖譜。對MS2和ΦX174噬菌體。花椰菜花葉病毒、SV40和乙型肝炎病毒核酸的核苷酸序列,已全部查明。

  蛋白質 病毒的主要組分,依其功能可分為衣殼蛋白、膜蛋白、糖蛋白和內在酶4類。

  衣殼蛋白包裹核酸形成保護性的外殼。簡單的病毒隻有1種衣殼蛋白,較復雜的如腺病毒衣殼是由六鄰體、五鄰體和纖維3種蛋白構成的。在有包膜的病毒如流感和水皰性口炎病毒中,膜蛋白一方面與外層脂質相連結,另一方面又同內部的核殼相連結,起到維系病毒內外結構的作用。糖蛋白位於包膜表面,有的形成突起,如流感病毒的血凝素,能與細胞膜受體結合。病毒雖無完整的酶系統,但常含有一些特殊的酶,如流感病毒的神經氨酸酶和噬菌體的溶菌酶。此外,呼腸孤病毒科、彈狀病毒科、正粘病毒科和副粘病毒科病毒粒中含 RNA多聚酶,反錄病毒科含反轉錄酶,均與核酸復制有關。目前已查明十幾種病毒蛋白的全氨基酸序列。

  脂質 存在於包膜中,包膜是在病毒成熟時從細胞質膜或核膜芽生獲得的,所以病毒脂質常具有宿主細胞脂質的特征。用有機溶劑或去污劑破壞包膜脂質,可使病毒粒裂解。

   除核酸中的戊糖外,病毒包膜還含有與蛋白或脂質結合的多糖。

  煙草花葉病毒、流感病毒和枯草桿菌噬菌體的電子顯微鏡照片和結構模式圖(見植物病毒、正粘病毒科和細菌病毒)。

復 制

  病毒復制指病毒粒入侵宿主細胞到最後細胞釋放子代毒粒的全過程,包括吸附、進入與脫殼、病毒早期基因表達、核酸復制、晚期基因表達、裝配和釋放等步驟(圖5)。各步的細節因病毒而異。

  吸附與進入 T4噬菌體先以其尾絲與大腸桿菌表面受體結合,隨後尾鞘收縮,裸露出的尾軸穿入細菌外壁,把頭部內儲存的DNA註射到細菌體內。動物病毒也是先與細胞受體結合,以後或是靠細胞的吞噬作用進入,或是病毒包膜與細胞質膜融合後使核殼進入。植物病毒則是通過傷口侵入或通過媒介昆蟲直接註入。一般情況下,病毒均須經脫殼,即脫去外被的蛋白質釋放核酸,才能進行下一步復制。

  基因表達 將其核酸上的遺傳信息轉錄成信使核糖核酸(mRNA),然後再翻譯成蛋白質。一般在核酸復制以前的稱早期基因表達,所產生的早期蛋白質,有的是核酸復制所需的酶,有的能抑制細胞核酸和蛋白質的合成;在核酸復制開始以後的稱晚期基因表達,所產生的晚期蛋白質主要是構成毒粒的結構蛋白質。早期和晚期蛋白質中都包括一些對病毒復制起調控作用的蛋白質。

  轉錄 因病毒核酸的類型而異,共有6種方式:雙鏈DNA(dsDNA)的病毒如SV40,其轉錄方式與宿主細胞相同;含單鏈DNA(ssDNA)的病毒如小DNA病毒科,需要通過雙鏈階段後再轉錄出mRNA;含單鏈正鏈RNA(ss+RNA)的病毒如脊髓灰質炎病毒、煙草花葉病毒和 Qβ噬菌體,其RNA可直接作為信使,利用宿主的蛋白質合成機器合成它所編碼的蛋白質;含單鏈負鏈RNA(ss-RNA)的病毒如水皰性口炎病毒和流感病毒,需先轉錄成互補的正鏈作為其mRNA,ssRNA的反錄病毒如雞肉瘤病毒和白血病病毒,需先經反轉錄成dsDNA而整含到宿主染色體中,於表達時再轉錄成mRNA,含dsRNA的呼腸孤病毒,則以保守型復制方式轉錄出與原來雙鏈中的正鏈相同的mRNA。

  近年來發現有些病毒(如腺病毒和SV40)的基因是不連續的,有外顯子與內含子之分,轉錄後有剪接過程,把內含子剪除而把外顯子連接起來,才有mRNA的功能。多數病毒的mRNA還需經過其他加工,如在5'端加上“帽子”結構和在3'端加上多聚腺嘌呤核苷酸(見基因調控)。

  病毒基因轉錄所需酶的來源也不相同,如小DNA病毒科、乳多泡病毒科所需依賴於DNA的RNA多聚酶,都是利用宿主原有的酶;而彈狀病毒科、正粘病毒科、副粘病毒科和呼腸孤病毒科所需的依賴於RNA的RNA多聚酶,以及反錄病毒科所需的反轉錄酶,都是病毒粒自備的。

  翻譯 不同病毒mRNA翻譯的方式是不同的。一般認為噬菌體的翻譯是多順反子的,如Qβ的RNA上有3個順反子(為單個肽鏈編碼的基因功能單位),可沿著1條mRNA獨立地翻譯出3種多肽。動物病毒的翻譯是單順反子的,即由其基因組轉錄成不同的mRNA,每種mRNA翻譯成一種多肽。分節段基因組病毒如流感病毒和呼腸孤病毒,每1節段RNA構成1個順反子,多分體基因組的植物病毒也是如此。脊髓灰質炎病毒的mRNA先被翻譯成1個分子量為20萬的巨肽,再經裂解成為衣殼蛋白和酶。

  有些病毒如ΦΧ174,Qβ噬菌體和SV40等,存在基因重疊現象,即按讀碼位相不同而從同一核苷酸序列可以表達出一種以上的蛋白質。這是病毒經濟地利用其有限的遺傳信息的1種方式。

  核酸復制 DNA病毒按照經典的沃森-克裡克堿基配對方式進行DNA復制。乳多泡病毒的環狀DNA按“滾環”模式進行復制時,需要有核酸內切酶和連接酶參與。病毒RNA是通過半保留方式復制的,即以病毒RNA(vRNA)為模板,同時轉錄幾個互補鏈(cRNA),cRNA轉錄完成並脫落後,又以同樣方式再轉錄出新的vRNA。因此,在感染細胞中可以查出具有部分雙鏈結構而又拖著多條長短不同單鏈“尾巴”(正在合成中的互補鏈)的“復制中間體”。

  病毒核酸復制所需酶的來源也各不相同。SV40DNA合成所需的酶都來自宿主。含 RNA的Qβ噬菌體、小RNA病毒科和含ssRNA的植物病毒所需RNA多聚酶的某個亞基,可能由病毒基因編碼,而其他亞基來自宿主。皰疹病毒DNA復制所需的酶,部分地由病毒編碼,如DNA多聚酶和胸苷激酶,可能還有核苷酸還原酶。痘類病毒的獨立自主能力最強,甚至能在去核細胞中進行DNA復制,其基因組至少能為75種蛋白質編碼,包括DNA多聚酶、胸苷激酶、脫氧核糖核酸酶和聚核苷酸連接酶。

  裝配與釋放 病毒核酸和結構蛋白是分別復制的,然後裝配成完整的病毒粒。最簡單的裝配方式(如煙草花葉病毒)是核酸與衣殼蛋白相互識別,由衣殼亞單位按一定方式圍繞RNA聚集而成,不借助酶,也無需能量再生體系。許多二十面體病毒粒先聚集其衣殼,然後再裝入核酸。有包膜的病毒,在細胞內形成核殼後轉移至被病毒修飾瞭的細胞核膜或質膜下面,以芽生方式釋放病毒粒。T4噬菌體則先分別裝配頭部、尾部和尾絲,最後組合成完整病毒粒,裂解細菌而釋放,其中有些步驟需酶的作用。

感染類型和宿主反應

  細胞水平上的感染類型和宿主反應 很早發現噬菌體感染有裂解性和溶源性之分。以大腸桿菌的λ噬菌體為例,裂解性感染於經歷上述復制周期後產生大量子代病毒粒而將細菌裂解;而溶源性感染時,噬菌體DNA環化並整合到大腸桿菌DNA的特異性位點上,隨著細菌的分裂而傳給子代細菌,細菌不被裂解也不產生子代病毒粒。營養條件、紫外線或化學藥物都能使溶性源感染轉化為裂解性。動物的DNA病毒如SV40、腺病毒、皰疹病毒等於感染敏感細胞(稱為容許細胞)後,形成裂解性感染,而於感染不大敏感的細胞(稱為不容許細胞)後,則形成轉化性感染。轉化性感染與溶源性感染相似,病毒DNA或其片段整合於細胞染色體上,並隨細胞分裂而傳給子代細胞,表達其部分基因(一般為早期基因),但不產生子代病毒粒,細胞也不死亡,但被轉化成類似於腫瘤細胞,可無限地傳代。另一方面,RNA腫瘤病毒(如雞肉瘤病毒)必須先將其RNA反轉錄成dsDNA並整合到細胞染色體上,才能進行復制,所以這種感染方式是獨特的,既是轉化性感染,又產生大量病毒粒。

  宿主細胞對病毒感染的反應有4種:無明顯反應、細胞死亡、細胞增生後死亡和細胞轉化。例如,副粘病毒SV5 在細胞培養中產生大量病毒而不引起明顯反應。多數病毒感染敏感細胞時,由於抑制瞭細胞核酸和蛋白質合成而引起細胞死亡。痘病毒感染時,先刺激細胞多次分裂然後死亡,造成痘皰病灶。DNA病毒和RNA腫瘤病毒則引起細胞轉化。

  有些動物病毒於感染宿主細胞後,在胞核或細胞質內形成具有特殊染色特性的內含物,稱為包涵體,如痘病毒的細胞質內包涵體和皰疹病毒的胞核內包涵體。這些包涵體有的是由未成熟或成熟的病毒粒構成,有的是宿主細胞的反應產物,有的是兩者的混合物。有些昆蟲病毒的病毒粒包埋在蛋白基質中,形成包涵體如核型多角體病毒。

  脊椎動物細胞感染病毒後的另一種反應是產生幹擾素。幹擾素是一種動物細胞編碼的蛋白,其基因平常處於不活動狀態,於病毒感染或經雙鏈RNA誘導後活化。幹擾素有廣譜的抗病毒作用,但並不直接作用於病毒,其作用機制是通過與細胞膜結合,激活具有抗病毒作用的3種酶,阻斷瞭病毒mRNA的翻譯。幹擾素在防止病毒擴散和疾病恢復中有一定作用,並有可能成為一種抗病毒藥物。

  機體水平上的感染類型和宿主反應 高等動、植物感染病毒後,可表現為顯性感染和持續感染,動物病毒還可表現為隱性感染。隱性感染無臨床癥狀,顯性感染表現為臨床疾病;在持續感染中,病毒在機體內長期存在。動物病毒的持續感染又分為潛伏感染、慢性感染和長程感染3類。潛伏感染如皰疹,平常無癥狀也查不到病毒,但由於內外因素的刺激而復發時出現病毒;慢性感染如乙型肝炎,有或無癥狀,但可查到病毒;長程感染限於少數病毒,如綿羊的 Maedi-visna(一種反錄病毒感染)可查到病毒;潛伏期和病程都很長,進行性發病直至死亡。

  高等動物能對病毒感染產生特異性免疫反應。免疫反應分為體液免疫和細胞免疫兩類,體液免疫表現為由B細胞產生的抗體,其中包括能特異地滅活病毒的中和抗體。中和抗體在預防再感染中起主導作用。細胞免疫的主要表現是識別病毒抗原並發生反應的 T淋巴細胞,在清除病毒和病毒感染細胞中起主導作用。

  植物細胞對病毒常有過敏反應,細胞迅速死亡,形成枯斑,同時病毒復制也受到限制。另一種反應是產生一種很像幹擾素的抗病毒因子,能保護未受感染的細胞。

  致瘤作用 有一些病毒能誘發良性腫瘤,如痘病毒科的兔纖維瘤病毒、人傳染性軟疣病毒和乳多泡病毒科的乳頭瘤病毒;另有一些能誘發惡性腫瘤,按其核酸種類可分為DNA腫瘤病毒和 RNA腫瘤病毒。DNA腫瘤病毒包括乳多泡病毒科的SV40和多瘤病毒,以及腺病毒科和皰疹病毒科的某些成員,從腫瘤細胞中可查出病毒核酸或其片段和病毒編碼的蛋白,但一般沒有完整的病毒粒。RNA腫瘤病毒均屬反錄病毒科,包括雞和小鼠的白血病和肉瘤病毒,從腫瘤細胞中可查到病毒粒。這兩類病毒均能在體外轉化細胞。在人類腫瘤中,已證明EB病毒與伯基特淋巴瘤和鼻咽癌有密切關系;最近,從一種T細胞白血病查到反錄病毒。此外,Ⅱ型皰疹病毒可能與宮頸癌病因有關,乙型肝炎病毒可能與肝癌病因有關。但是,病毒大概不是唯一的病因,環境和遺傳因素可能起協同作用。

起 源

  對於病毒的起源曾有過種種推測;一種觀點認為病毒可能類似於最原始的生命;另一種認為病毒可能是從細菌退化而來,由於寄生性的高度發展而逐步喪失瞭獨立生活的能力,例如由腐生菌→寄生菌→細胞內寄生菌→枝原體→立克次氏體→衣原體→大病毒→小病毒;還有一種則認為病毒可能是宿主細胞的產物。這些推測各有一定的依據,目前尚無定論。因此病毒在生物進化中的地位是未定的。但是,不論其原始起源如何,病毒一旦產生以後,同其他生物一樣,能通過變異和自然選擇而演化。

分 類

  病毒分類命名的工作現由國際病毒分類委員會負責,已於1971、1976、1979和1982年發表過4次報告。

  1982年將資料較齊全而能分類的病毒劃分為7大群,分群的根據是基因組的核酸種類(DNA或RNA)、類型(ds或ss)和有無包膜。7大群中包括59個科組:

  dsDNA,有包膜   4科

  dsDNA,無包膜   8科,1組

  ssDNA,無包膜   3科,1組

  dsRNA,有包膜   1科

  dsRNA,無包膜   1科,4個可能科

  ssRNA,有包膜   8科,1組

  ssRNA,無包膜   4科,22組,1個可能組如按宿主分類,則為:

  細菌病毒     10科

  真菌病毒     3個可能科

  植物病毒     24組,1個可能組

  無脊椎動物病毒  2科,1組

  脊椎動物病毒   9科

  無脊椎、脊椎動物共有的病毒有6科,即痘病毒科、虹彩病毒科、小DNA病毒科、披膜病毒科、佈尼亞病毒科和小RNA病毒科,以及一個可能科,即二節段雙鏈RNA病毒。

  無脊椎、脊椎動物和植物共有的病毒有2科,即呼腸孤病毒科和彈狀病毒科。

  病毒分類還處於初期階段,以後還會迅速發展和演變。目前對資料較齊全的動物病毒和噬菌體都已立為科,科名采用拉丁文;而植物病毒則隻立組,組名多采用縮拼法,即將某科的典型代表病毒的普通名稱如Tobacco mo-saic virus縮拼為Tobamo-virus。科下分亞科及屬,屬下即為各個病毒的普通名稱,目前尚未分種。

  

參考書目

 F.J.Fenner,D.O.White,Medical Virology,2nd ed.,Academic Press,New York/London,1976.

 S.E.Luria,et al.,General Virology,3rd ed.,JohnWiley &Sons,New York,1978.