吸附質分子與吸附劑表面原子或分子間以物理力進行的吸附作用。這種物理力是範德瓦耳斯力,它包括色散力、靜電力和誘導力。對於極性不大的吸附質和吸附劑,色散力在物理吸附中起主要作用。當極性分子與帶靜電荷的吸附劑表面相互作用,或因吸附質與吸附劑表面分子作用,使二者的電子結構發生變化而產生偶極矩時,定向力和誘導力在物理吸附中也有重要作用。有時吸附質分子與吸附劑表面以形成氫鍵的形式發生物理吸附。

  物理吸附有以下特點:①氣體的物理吸附類類似於氣體的液化和蒸氣的凝結,故物理吸附熱較小,與相應氣體的液化熱相近;②氣體或蒸氣的沸點越高或飽和蒸氣壓越低,它們越容易液化或凝結,物理吸附量就越大;③物理吸附一般不需要活化能,故吸附和脫附速率都較快;任何氣體在任何固體上隻要溫度適宜都可以發生物理吸附,沒有選擇性;④物理吸附可以是單分子層吸附,也可以是多分子層吸附;⑤被吸附分子的結構變化不大,不形成新的化學鍵,故紅外、紫外光譜圖上無新的吸收峰出現,但可有位移;⑥物理吸附是可逆的;⑦固體自溶液中的吸附多數是物理吸附。

  氣體吸附理論主要有朗繆爾單分子層吸附理論、波拉尼吸附勢能理論、BET多層吸附理論(見多分子層吸附)、二維吸附膜理論和極化理論等,以前三種理論應用最廣。這些吸附理論都從不同的物理模型出發,綜合考查大量的實驗結果,經過一定的數學處理,對某種(或幾種)類型的吸附等溫線的限定部分做出解釋,並給出描述吸附等溫線的方程式。

  物理吸附在化學工業、石油加工工業、農業、醫藥工業、環境保護等部門和領域都有廣泛的應用,最常用的是從氣體和液體介質中回收有用物質或去除雜質,如氣體的分離、氣體或液體的幹燥、油的脫色等。物理吸附在多相催化中有特殊的意義,它不僅是多相催化反應的先決條件,而且利用物理吸附原理可以測定催化劑的表面積和孔結構,而這些宏觀性質對於制備優良催化劑,比較催化活性,改進反應物和產物的擴散條件,選擇催化劑的載體以及催化劑的再生等方面都有重要作用。