使轉子發生強烈振動的轉速,它是轉子動力學中研究得比較完善的一類問題。轉動系統中轉子各微段的質心不可能嚴格處於回轉軸上,因此,當轉子轉動時,會出現橫向幹擾,在某些轉速下還會引起系統強烈振動,出現這種情況時的轉速就是臨界轉速。為保證系統正常工作或避免系統因振動而損壞,轉動系統的轉子工作轉速應盡可能避開臨界轉速,若無法避開,則應採取特殊防振措施。

  臨界轉速和轉子不旋轉時橫向振動的固有頻率相同,也就是說,臨界轉速與轉子的彈性和質質量分佈等因素有關。對於具有有限個集中質量的離散轉動系統,臨界轉速的數目等於集中質量的個數;對於質量連續分佈的彈性轉動系統,臨界轉速有無窮多個。

  由於轉子的形狀通常比較復雜,計算臨界轉速多用近似方法。當精度要求不高時,可用瑞利法(見瑞利原理)算出臨界轉速的一階近似值。瑞利-裡茲法和佈勃諾夫-伽遼金法則可用來作比較精確的計算。精確計算大型轉子最常用的方法是HMP法,它是在H.霍爾澤計算扭振固有頻率的方法的基礎上,經N.O.密克勒斯塔和M.A.普羅爾改進而來的(HMP就是他們三人姓氏的縮寫)。該法的要點是:先把轉子分成若幹段,再經換算把每段上的集中質量和分佈質量集聚在該段的兩端,然後逐段作撓度、轉角、彎矩、剪力的傳遞運算。在運算中,上述四個量都表為一個假定的轉速的函數。每一個滿足轉子兩端一切邊界條件的轉速就是一個臨界轉速。與各階臨界轉速相應的振型也可由此算出。

  對某些轉子,臨界轉速的概念有瞭變化,一些隻在轉動時才顯出效應的因素,如急螺效應(回轉軸線改變方向時轉子產生慣性力矩;轉子振動時軸線改變方向)和軸承特性等,會使臨界轉速隨轉子的實際轉速或轉子中由各微段質心偏離引起的不平衡量的大小而改變。當這些因素不能忽略時,臨界轉速同轉子不旋轉時的橫向振動的固有頻率在數值上就不一致。

  

參考書目

 丁士鐸著:《轉軸的臨界速度》,中國工業出版社,北京,1962。