培育優良微生物的生物學技術。其方法通常為自然選育和人工選育兩類,可單獨使用,也可交叉進行。

  自然選育 對自然界中的微生物,在未經人工誘變或雜交處理的情況下進行分離和純化(見微生物的分離和純化),然後進行純培養和測定(見微生物測定法),擇優選取微生物的菌種。這種方法簡單易行,但獲得優良菌種的幾率小,一般難以滿足生產的需要。

  人工選育 分誘變育種和雜交育種兩種。

  誘變育種 以誘發基因突變為手段的微生物育種技術。1927年,H.J.馬勒發現X射線有增加突變率的效果;1944年,C.奧爾巴克首次發現氮芥子氣的誘變效應;隨後,人們陸續發現許多物理的(如紫外線、γ射線、快中子等)和化學的誘變因素。化學誘變因素分為3種:①誘變劑與一個或多個核酸堿基發生化學變化,使DNA復制時堿基置換而引起變異,如羥胺亞硝酸、硫酸二乙酯、甲基磺酸乙酯、硝基胍、亞硝基甲基脲等;②誘變劑是天然堿基的結構類似物,在復制時參入DNA分子中引起變異,如5-溴尿嘧啶、5-氨基尿嘧啶、8-氮鳥嘌呤和2-氨基嘌呤等;③誘變劑在DNA分子上減少或增加1~2個堿基,使堿基突變點以下全部遺傳密碼的轉錄和翻譯發生錯誤,從而導致碼組移動突變體的出現,如吖啶類物質和一些氮芥衍生物(ICR)等。誘變育種操作簡便,突變率高,突變譜廣,它不僅能提高產量,改進質量,還可擴大產品品種和簡化工藝條件。如1943年從自然界分離到的青黴素產生菌的效價隻有20單位/毫升,經過一系列的誘變育種後,效價已達40000單位/毫升;金黴素產生菌經誘變後,發酵液中又積累瞭去甲基金黴素;谷氨酸棒桿菌1299經紫外線誘變後,有的能產賴氨酸,有的能產纈氨酸,增加瞭產品的種類;土黴素產生菌經誘變後,選到瞭能減少泡沫的突變菌株,從而提高瞭發酵罐的利用率。誘變育種的不足是缺乏定向性。

  雜交育種 不同基因型的品系或種屬間,通過交配或體細胞融合等手段形成雜種,或者是通過轉化和轉導形成重組體,再從這些雜種或重組體或是它們的後代中篩選優良菌種。通過這種方法可以分離到具有新的基因組合的重組體,也可以選出由於具有雜種優勢而生長旺盛、生物量多、適應性強以及某些酶活性提高的新品系。雜交育種的方式因實驗菌株的生殖方式不同而異,如有性雜交、準性重組、原生質體融合、轉化、轉導、雜種質粒的轉化等;但是,選擇親株、分離群體後代的培養、擇優去劣和雜種遺傳分析的過程基本是相同的。雜交法一般指有交配反應的菌株進行交配或接合而形成雜種。這種方法適用范圍很廣,在酒類、面包、藥用和飼料酵母的育種,鏈黴菌和青黴菌抗生素產量的提高,曲黴的酶活性增強等方面均已獲得成功。

  體細胞融合是在不具性反應的品系或種屬間細胞融合和染色體重組,先用酶溶解細胞壁,再用氯化鈣-聚乙二醇處理原生質體,促使融合,獲得雜種。此法在工業微生物的菌種改良中有積極作用。

  轉化和轉導首先應用於細菌,現已廣泛用於鏈黴菌和酵母菌等。隨著重組DNA技術的發展,重組質粒的構建和轉化系統的確立,已可將目的基因轉移到受體細胞內,得到能產生具有重要經濟價值的生物活性物質(如疫苗、酶等)的株系。