靠外部供給壓力油、在軸承內建立靜壓承載油膜以實現液體潤滑的滑動軸承。液體靜壓軸承從起動到停止始終在液體潤滑下工作,所以沒有磨損,使用壽命長,起動功率小,在極低(甚至為零)的速度下也能應用。此外,這種軸承還具有旋轉精度高、油膜剛度大、能抑制油膜振盪等優點,但需要專用油箱供給壓力油,高速時功耗較大。

  簡史 1862年,法國的L.D.吉拉爾發明液體靜壓軸承,指出摩擦係數可小至1/5000。1917年,英國科學傢瑞利發表求解液體靜壓推力軸承的承載能力、流量和摩擦力矩方程。1938年,美國在大型天文望遠鏡上應用液體靜壓軸承,承載總重量500噸,每晝夜轉動一周,驅動功率僅1/12馬力。1948年法國開始把液體靜壓軸承用於磨床上。現代液體靜壓軸承已成功地用於重型、精密、高效率的機器和設備上。

  分類 液體靜壓軸承分徑向軸承、推力軸承和徑向推力軸承(圖1)。它有供油壓力恒定和供油流量恒定兩種系統。供油壓力恒定系統較為常用。

  作用原理 圖2為供油壓力恒定系統的液體靜壓軸承和軸瓦的構造。外部供給的壓力油通過補償元件後從供油壓力降至油腔壓力,再通過封油面與軸頸間的間隙從油腔壓力降至環境壓力。多數軸承在軸不受外力時,軸頸與軸承孔同心,各油腔的間隙、流量、壓力均相等,這稱為設計狀態。當軸受外力時軸頸位移,各油腔的平均間隙、流量、壓力均發生變化,這時軸承外力與各油腔油膜力的向量和相平衡。補償元件起自動調節油腔壓力和補償流量的作用,其補償性能會影響軸承的承載能力、油膜剛度等。供油壓力恒定系統中的補償元件稱為節流器,常見的有毛細管節流器、小孔節流器、滑閥節流器、薄膜節流器等多種。供油流量恒定系統中的補償元件有定量泵和定量閥。補償元件不同,軸承載荷-位移性能也不同(圖3)。由於軸的旋轉,在軸承封油面上有液體動壓力產生,有利於提高軸承的承載能力。這種現象稱為動壓效應,速度越高,動壓效應也越顯著。

  設計準則 設計液體靜壓軸承時應根據要求性能進行優化,如要求承載能力最大,油膜剛度最大,位移最小,功耗最少等。為增大軸承的動壓效應和減少流量,液體靜壓軸承的封油面宜適當取寬些;為提高軸承的油膜剛度,軸承間隙宜適當取小些;軸承的溫升、流量與供油壓力成正比,泵功耗與供油壓力的平方成正比,故在滿足承載能力的前提下供油壓力不宜過高。

  設計狀態下的油腔壓力與供油壓力之比稱為壓力比。它是影響軸承性能的重要參數,可根據對承載能力、油膜剛度和位移等不同要求選取。按設計狀態下油膜剛度最大的原則選取時,壓力比為:毛細管節流器0.5,小孔節流器0.586。潤滑油粘度應根據軸承的摩擦功耗和泵功耗之和為最小的原則選取。對於中等以下速度的軸承,摩擦功耗與泵功耗之比為1~3時,總功耗為最小。