改善摩擦副的摩擦狀態以降低摩擦阻力減緩磨損的技術措施。潤滑是摩擦學研究的重要內容。充分利用現代的潤滑技術能顯著提高機器的使用性能和壽命並減少能源消耗。按摩擦副之間潤滑材料的不同,潤滑可分為流體(液體、氣體)潤滑和固體潤滑(見潤滑劑)。按摩擦副之間摩擦狀態的不同,潤滑又分為流體潤滑和邊界潤滑。介於流體潤滑和邊界潤滑之間的潤滑狀態稱為混合潤滑,或稱部分彈性流體動壓潤滑。

  流體潤滑> 在適當條件下,兩相互摩擦表面可以被一層具有一定厚度(1.5~2微米以上)的粘性流體隔開,由流體壓力平衡外載荷,流體層內的分子大部分不受摩擦表面離子電力場的作用而可自由移動,即摩擦隻存在於流體分子之間的潤滑狀態。流體潤滑的摩擦系數很低(小於0.01)。按潤滑膜壓力的產生方式,流體潤滑可分為動壓潤滑和靜壓潤滑。①流體動壓潤滑:靠摩擦表面的幾何形狀和相對運動,由粘性流體的動力作用產生壓力,以平衡外載荷。②流體靜壓潤滑:由外部向摩擦表面間供給有一定壓力的流體,靠流體的靜壓力平衡外載荷。

  在傳統的潤滑力學研究中,摩擦體和潤滑流體分別被看作為剛性體和粘性流體(牛頓流體)。實際上摩擦體是彈性體,不過有時可以把它簡化為剛性體。需要考慮彈性變形和壓力對粘度影響的流體動壓潤滑,稱為彈性流體動壓潤滑。摩擦體處於塑性狀態時需要考慮塑性效應的流體動壓潤滑,稱為塑性流體動壓潤滑。流體潤滑的傳統研究方法始於1886年,奠基人為英國的O.雷諾。後人把傳統潤滑力學研究成果統稱為經典潤滑力學。

  在流體潤滑中,流體的粘性一般用粘度來評定。圖1為假設流體為不可壓縮並作層片狀流動的模型。流體對切向運動的粘性剪切阻力,即切應力τ與速度梯度

/ (流體速度 u沿垂直於層片方向 y的變化率)的關系為

式中 η為比例常數,即 粘度,又稱動力粘度。上述關系稱為流體層流流動(圖2)的內摩擦定律,又稱牛頓內摩擦定律。流體的流動行為符合此定律的稱為牛頓流體。對於脂類塑性體(稱非牛頓流體)相應的內摩擦定律為

         

式中 τ0為脂的初始剪切阻力。有時還應考慮流體流動對時間的依從關系。

  雷諾方程是描述流體動壓潤滑膜壓力分佈的基本方程。傳統的雷諾方程是基於粘性流體的運動方程,又稱納維-斯托克斯方程。它是與質量連續性方程合並後根據某些假設簡化得出的。描述流體潤滑膜壓力分佈的普遍雷諾方程為

式中 v 1v 2分別為邊界面1、2沿 x方向的速度; t為時間; η為流體的動力粘度; p為流體膜的壓力; 為流體的密度; h為膜厚度。此式左邊兩項表征膜壓力分佈,右邊三項表明流體動壓潤滑膜壓力產生的原因,即楔入效應、表面伸張效應和擠壓效應。

  通常表面伸張效應極微,可以忽略。當膜厚h無變化時,擠壓效應也可忽略。因此在大多數工況下,潤滑流體的楔入效應為產生膜壓力的主要項。對於氣體動壓潤滑,還要對上述普遍雷諾方程附加一狀態方程,如認為潤滑氣體為真實氣體,滿足多方關系,則附加的方程為

式中 T為絕對溫度; R為特定氣體的氣體常數; n為多方膨脹指數, n= c pc vc pc v分別為定壓比熱容和定容比熱容。當 n=1時,為等溫流動;當 n=1.401(空氣)時,為絕熱流動。此外,當潤滑膜中的溫度變化很大,從而使粘度發生顯著變化時,還須對普遍雷諾方程附加一能量方程聯立求解。

  邊界潤滑 兩相互摩擦表面間存在一層薄膜(邊界膜)時的潤滑狀態。這種現象通常出現在機器起動或停車時。邊界膜可分為吸附膜和反應膜等(圖3)。潤滑劑中的極性分子吸附在摩擦表面所形成的膜稱為吸附膜。吸附膜又分為物理吸附膜和化學吸附膜。①物理吸附膜:分子的吸引力將極性分子牢固地吸附在固體表面上,並定向排列形成一至數個分子層厚的表面膜。②化學吸附膜:潤滑油中的某些有機化合物(如二烷基二硫代磷酸鹽、二元酸二元醇酯等)降解或聚合反應所生成的表面膜,或潤滑油中極性分子的有價電子與金屬表面的電子發生交換而產生的化學結合力,使金屬皂的極性分子定向排列並吸附在表面上所形成的表面膜。潤滑油中的添加劑,如含硫、磷、氯等有機化合物的極壓劑,與金屬表面起化學作用生成能承受較大載荷的表面膜稱為反應膜。在兩個摩擦面上凸峰直接接觸相對運動時所產生的摩擦熱作用下,反應膜不斷形成和破壞。

  吸附膜達到飽和時,極性分子緊密排列,分子間的內聚力使膜具有一定的承載能力,防止兩摩擦表面直接接觸。圖4為吸附膜的潤滑作用模型。當摩擦副相對滑動時,吸附膜如同兩個毛刷子相對滑動,能起潤滑作用,降低摩擦系數。反應膜熔點高,不易粘著,剪切強度低,摩阻力小,又能不斷破壞和形成,故能防止金屬表面直接接觸而起潤滑作用。

  影響吸附膜潤滑性能的因素有極性分子的結構和吸附量、溫度、速度和載荷等。當極性分子中碳原子數目增加時,摩擦系數降低。極性分子吸附量達到飽和時,膜的潤滑性能良好並穩定。當工作溫度超過一定范圍時,吸附膜將散亂或脫附,潤滑失效。通常吸附膜的摩擦系數隨速度的增加而下降,直到某一定值。在一般工況下,吸附膜的摩擦系數與幹摩擦相同,不受載荷的影響。反應膜在極高壓力下有很強的抗粘著能力,潤滑性能比任何吸附膜更穩定,它的摩擦系數隨速度的增加而增加,直到某一定值。反應膜常用於重載、高速和高溫等工況下。

  在一定的工作條件下,邊界膜抵抗破裂的能力稱為邊界膜的強度。它可用臨界pv值、臨界溫度值或臨界摩擦系數來表示。①臨界pv值:在正常的邊界潤滑中,當載荷p或速度v加大到某一數值,摩擦副的溫度突然升高,摩擦系數和磨損量急劇增大。邊界膜強度達到極限值時相應的pv值稱為臨界pv值。②臨界溫度值:當摩擦表面溫度達到邊界膜散亂、軟化或熔化的程度時,吸附膜發生脫附,摩擦系數迅速增大但仍具有某些潤滑作用,這時的溫度稱為第一臨界溫度。當溫度繼續升高到使潤滑油(脂)發生聚合或分解,邊界膜完全破裂,摩擦副發生粘著,磨損劇增時的溫度稱為第二臨界溫度。臨界溫度是衡量邊界膜強度的主要參數。③臨界摩擦次數:邊界膜達到潤滑失效時所重復的摩擦次數稱為臨界摩擦次數。

參考書目

 D.F.摩爾著,黃文治等譯:《摩擦學原理及應用》,機械工業出版社,北京1982。( D.F.Moore,Principles and Applications of Tribology,Pergamon International Library,London1975.)

 J.霍林著,上海交通大學摩擦學研究室譯:《摩擦學原理》,機械工業出版社,北京,1981。( J.Halling,Principles of Tribology,Macmillan Pr.,London,1975.