兩相互接觸的物體有相對運動或有相對運動趨勢時在接觸處產生阻力的現象,是摩擦學研究的重要內容。因摩擦而產生的阻力稱為摩擦力。相互摩擦的兩物體稱為摩擦副。摩擦通常起有害作用,但有時又是不可缺少的。人的行走和機車的牽引能力都要依靠摩擦。在機械工程中利用摩擦做有益工作的有帶傳動、制動器、離合器和摩擦焊等。

  摩擦種類 摩擦的類別很多,按摩擦副的運動形式摩擦分為滑動摩擦和滾動摩擦,前者是是兩相互接觸物體有相對滑動或有相對滑動趨勢時的摩擦,後者是兩相互接觸物體有相對滾動或有相對滾動趨勢時的摩擦;按摩擦副的運動狀態摩擦分為靜摩擦和動摩擦,前者是相互接觸的兩物體有相對運動趨勢並處於靜止臨界狀態時的摩擦,後者是相互接觸的兩物體越過靜止臨界狀態而發生相對運動時的摩擦;按摩擦表面的潤滑狀態,摩擦可分為幹摩擦、邊界摩擦和流體摩擦(見圖)。摩擦又可分為外摩擦和內摩擦。外摩擦是指兩物體表面作相對運動時的摩擦;內摩擦是指物體內部分子間的摩擦。幹摩擦和邊界摩擦屬外摩擦,流體摩擦屬內摩擦。

  幹摩擦 摩擦副表面直接接觸,沒有潤滑劑存在時的摩擦。常用庫侖摩擦定律表達摩擦表面間的滑動摩擦力F、法向力N和摩擦系數f間的關系:f=F/N。鋼對鋼的f值在大氣中約為0.15~0.20,潔凈表面可達0.7~0.8。根據英國的F.P.鮑登等人的研究,極為潔凈的金屬(表面上的氣體用加熱、電子轟擊等方法排除)在高真空度的實驗條件下,表面接觸處被咬死,f值可高達100。這種極為潔凈的金屬表面一旦與大氣相接觸便立即被污染或氧化,從而使f值顯著下降。

  用於闡明幹摩擦特性的主要摩擦理論有機械嚙合理論、分子吸引理論、靜電子理論以及焊合-剪切和犁削理論。最早出現的機械嚙合理論認為,兩個粗糙接觸表面相對運動時,對偶表面上的微凸體互相嚙合,摩擦力就是這些嚙合點切向阻力的總和。這個理論不能解釋極光滑表面間的摩擦現象。分子吸引理論認為金屬分子作連續振動和扭轉時,對偶表面彼此互相奪取和丟失分子,從而引起粘著-滑移現象,粘著摩擦力是由分子運動鍵的斷裂過程所引起的。靜電力理論認為金屬摩擦表面間的電子流動會在接觸表面上引起相反極性的電荷聚集,從而產生靜電吸引力,使表面互相貼附。這個理論能夠解釋摩擦過程中的粘著-滑移現象,但它預示的摩擦表面間在較長時間間隔內將有電子逸出和摩擦系數因之降低的現象,尚未在實驗中觀察到。1950年,鮑登提出的焊合-剪切和犁削理論(簡稱粘著理論)認為,摩擦表面局部接觸區產生的高壓引起局部焊合,由此形成的粘著結點隨表面的相對滑動而被剪斷。此外,在滑動中較硬表面的微凸體犁削較軟材料的基體而產生摩擦力。這個理論能夠解釋各種金屬的摩擦物理現象,得到比較普遍的認可。這些理論並不互相抵觸,而是互為補充。1979年,美國的徐楠樸等人提出過摩擦系數等於機械嚙合摩擦系數、粘著摩擦系數、犁削摩擦系數之和。

  靜摩擦的測定方法有傾斜法和牽引法。①傾斜法:把重力為N的欲測物體放在對偶材料的斜面上,逐漸增加斜面的傾角,測得物體開始滑動時的傾角θ(摩擦角),由此求得摩擦系數f=tgθ。②牽引法:把重力為N的欲測物體放在對偶材料的平面上,以力P牽引,物體開始滑動時的力F就是最大的靜摩擦力(此時F=P),由此求得摩擦系數f=F/N

  動摩擦可在各類型試驗機上(如往復式摩擦磨損試驗機、旋轉圓盤-銷式摩擦磨損試驗機和四球式摩擦試驗機)測定,為此在試驗機上裝設測定摩擦力或摩擦力矩的機構,先測出摩擦力,而後換算出摩擦系數。常見的測量方法有杠桿法、彈簧法和電測法等。測定時需要確保清潔,否則會影響所測的摩擦力。

  邊界摩擦和流體摩擦 邊界潤滑狀態下的摩擦稱為邊界摩擦。邊界摩擦系數低於幹摩擦系數。邊界摩擦狀態下的摩擦系數隻取決於摩擦界面的性質和邊界膜的結構形式,而與潤滑劑的粘度無關。流體潤滑狀態下的摩擦稱為流體摩擦。這種摩擦是流體粘性引起的。其摩擦系數較幹摩擦和邊界摩擦為低(見潤滑)。

參考書目

 D.F.摩爾著,黃文治等譯:《摩擦學原理及應用》,機械工業出版社,北京,1982。(D.F.Moore,Principles and Application of Tribology,International Library,London.1975.)

 J.霍林著,上海交通大學摩擦學研究室譯:《摩擦學原理》,機械工業出版社,北京,1981。(J.Halling,Principles of Tribology,Macmillan Pr.Ltd.,London,1975.