在兩種不同物質的介面上,正負電荷分別排列成的面層。在溶液中,固體表面常因表面基團的解離或自溶液中選擇性地吸附某種離子而帶電。由於電中性的要求,帶電表面附近的液體中必有與固體表面電荷數量相等但符號相反的多餘的反離子。帶電表面和反離子構成雙電層。

  熱運動使液相中的離子趨於均勻分佈,帶電表面則排斥同號離子並將反離子吸引至表面附近,溶液中離子的分佈情況由上述兩種相對抗的作用的相對大小決定。根據O.斯特恩的觀點,一部分反離子由於電電性吸引或非電性的特性吸引作用(例如范德瓦耳斯力)而和表面緊密結合,構成吸附層(或稱斯特恩層)。其餘的離子則擴散地分佈在溶液中,構成雙電層的擴散層(或稱古伊層)。由於帶電表面的吸引作用,在擴散層中反離子的濃度遠大於同號離子。離表面越遠,過剩的反離子越少,直至在溶液內部反離子的濃度與同號離子相等。

  由於電荷分離而造成的固液兩相內部的電位差,稱為表面電勢,通常用Ψ0表示。若溶液中某離子的濃度直接影響固體的表面電勢Ψ0,則該離子稱為決定電勢離子,例如AgI溶膠中的Ag+離子與I-離子。溶液中的其他離子則稱為不相幹離子。斯特恩層中吸附離子的電性中心構成斯特恩平面,它與溶液內部之間的電勢差稱為斯特恩電勢,一般用Ψd表示。在斯特恩層中電勢自Ψ0近似直線地變化至 Ψd。除瞭吸附的反離子之外,還有一部分溶劑(水)偶極子也與帶電表面緊密結合,作為整體一起運動。因此在電動現象中固液兩相發生相對運動時的滑動面是在斯特恩平面之外的溶液內某處。此滑動面與溶液內部的電位差稱為電動電勢或ζ電勢。雙電層中的電勢變化如圖所示。

按以上模型, ζ電勢應比Ψ d略低,但隻要溶液中電解質濃度不是很高,可以認為二者近似相等。

  在擴散層中,電勢隨離表面距離的變化大致呈指數關系。對於平的帶電表面,若Ψ0不很高,則擴散層中的電勢隨離表面的距離x的變化可用下式表示:

    

式中κ的倒數稱為雙電層厚度,與溶液內部各種離子濃度

(單位體積中的離子數目)及價數 Z i有以下關系:

式中e為電子電荷;ε為溶液的電容率;k為玻耳茲曼常數;T為熱力學溫度。上式表明,增加溶液中的離子濃度與價數均使雙電層變薄,擴散層內的電勢降也因此加快。另一方面,更多的反離子進入斯特恩層,ζ電勢也因此降低。高價或大的反離子甚至可能使ζ電勢呈反號。