為瞭得到或改善某些性能,在碳素鋼的基礎上添加適量的一種或多種合金元素的鐵碳合金叫合金鋼。世界各國對合金鋼中合金元素的限量範圍各不相同。以歐洲標準(Euronorm-20)為例,合金元素限量按表1所示。某單一合金元素含量隻有超過一定限量,方被認為是合金鋼。

表1 碳素鋼和合金鋼中限定元素含量

  合金鋼中由於含有不同種類和數量的合金元素,並采取適當的工藝措施,便可分別具有較高的強度、韌性、淬透性、耐磨性、耐蝕性、耐低溫性、耐熱性、熱強性、紅硬性等特殊性能。

  發展簡況 合金鋼已有一百多年的歷史瞭。工業上較多地使用合金鋼材大約是在19世紀後半期。當時由於鋼的生產量和使用量不斷增大,機械制造業需要解決鋼的加工切削問題,1868年英國人馬希特(R.F.Mushet)發明瞭成分為2.5%Mn-7%W的自硬鋼,將切削速度提高到5米/分。隨著商業和運輸的發展,1870年在美國用鉻鋼(1.5~2.0%Cr)在密西西比河上建造瞭跨度為158.5米的大橋;由於加工構件時發生困難,稍後,一些工業國傢改用鎳鋼(3.5%Ni)建造大跨度的橋梁。與此同時,一些國傢還將鎳鋼用於修造軍艦。隨著工程技術的發展,要求加快機械的轉動速度,1901年在西歐出現瞭高碳鉻滾動軸承鋼。1910年又發展出瞭18W-4Cr-1V型的高速工具鋼,進一步把切削速度提高到30米/分。可見合金鋼的問世和發展,是適應瞭社會生產力發展的要求,特別是和機械制造、交通運輸和軍事工業的需要分不開的。

  20世紀20年代以後,由於電弧爐煉鋼法被推廣使用,為合金鋼的大量生產創造瞭有利條件。化學工業和動力工業的發展,又促進瞭合金鋼品種的擴大,於是不銹鋼和耐熱鋼在這段期間問世瞭。1920年德國人毛雷爾(E.Maurer) 發明瞭18-8型不銹耐酸鋼,1929年在美國出現瞭Fe-Cr-Al電阻絲,到1939年德國在動力工業開始使用奧氏體耐熱鋼。第二次世界大戰以後至60年代,主要是發展高強度鋼和超高強度鋼的時代,由於航空工業和火箭技術發展的需要,出現瞭許多高強度鋼和超高強度鋼新鋼種,如沉淀硬化型高強度不銹鋼和各種低合金高強度鋼等是其代表性的鋼種。60年代以後,許多冶金新技術,特別是爐外精煉技術被普遍采用,合金鋼開始向高純度、高精度和超低碳的方向發展,又出現瞭馬氏體時效鋼、超純鐵素體不銹鋼等新鋼種。目前國際上使用的有上千個合金鋼鋼號,數萬個規格,合金鋼的產量約占鋼總產量的10%,是國民經濟建設和國防建設大量使用的重要金屬材料。

  合金鋼的分類 合金鋼的種類繁多,為瞭便於生產、使用和科學研究,需要進行分類。合金鋼分類的方法很多,其中最常用的方法是按用途分類,大體上可分為:建築結構用鋼,機械結構用鋼(除瞭合金結構鋼)外,還包括合金彈簧鋼和軸承鋼等),工具鋼(包括工模具鋼和高速工具鋼)以及特殊性能鋼(不銹耐酸鋼、耐熱不起皮鋼、無磁鋼等)。此外,按合金元素的總含量可分成:低合金鋼(5%以下)、中合金鋼(5~10%)和高合金鋼(超過10%)。按所含主要元素分類,有鉻鋼、鎳鋼、鉬鋼、鉻鎳鋼、鉻鎳鉬鋼等。按合金鋼的金相組織又可分成:鐵素體鋼、珠光體鋼、貝氏體鋼、馬氏體鋼、奧氏體鋼,以及亞共析鋼和過共析鋼等。

  合金元素在鋼中的存在狀態及其與碳的作用 合金鋼中常用的合金元素有矽(Si)、錳(Mn)、鉻(Cr)、鎳(Ni)、鉬(Mo)、鎢(W)、釩(V)、鈦(Ti)、鈮(Nb)、鋯(Zr)、鈷(Co)、鋁(Al)、銅(Cu)、硼(B)、稀土(RE)等。磷(P)、硫(S)、氮(N)等在某些情況下也起合金元素的作用。

  根據各種元素在鋼中形成碳化物的傾向,可分為三類:①強碳化物形成元素,如釩、鈦、鈮、鋯等。這類元素隻要有足夠的碳,在適當的條件下,就形成各自的碳化物;僅在缺碳或高溫的條件下,才以原子狀態進入固溶體中。②碳化物形成元素,如錳、鉻、鎢、鉬等。這類元素一部分以原子狀態進入固溶體中,另一部分形成置換式合金滲碳體,如(Fe,Mn)3C、(Fe,Cr)3C等,如果含量超過一定限度(除錳以外),又將形成各自的碳化物,如(Fe,Cr)7C3、(Fe,W)6C等。③不形成碳化物元素,如矽、鋁、銅、鎳、鈷等。這類元素一般以原子狀態存在於奧氏體、鐵素體等固溶體中。

  合金元素中一些比較活潑的元素,如鋁、錳、矽、鈦、鋯等,極易和鋼中的氧和氮化合,形成穩定的氧化物和氮化物,一般以夾雜物的形態存在於鋼中。錳、鋯等元素也和硫形成硫化物夾雜。鋼中含有足夠數量的鎳、鈦、鋁、鉬等元素時能形成不同類型的金屬間化合物。有的合金元素如銅、鉛等,如果含量超過它在鋼中的溶解度,則以較純的金屬相存在。

  合金元素在鋼中的作用 鋼的性能取決於鋼的相組成,相的成分和結構,各種相在鋼中所占的體積組分和彼此相對的分佈狀態。合金元素是通過影響上述因素而起作用的。

  對鋼的相變點的影響 主要是改變鋼中相變點的位置,大致可以歸納為以下三個方面:①改變相變點溫度。一般來說,擴大γ相(奧氏體)區的元素,如錳、鎳、碳、氮、銅、鋅等,使A3點溫度降低,A4點溫度升高;相反,縮小γ相區的元素,如鋯、硼、矽、磷、鈦、釩、鉬、鎢、鈮等,則使A3點溫度升高,A4點溫度降低。惟有鈷使A3A4點溫度均升高。鉻的作用比較特殊,含鉻量小於7%時使A3點溫度降低,大於7%時則使A3點溫度提高(見鐵碳平衡圖)。②改變共析點S的位置。縮小γ相區的元素,均使共析點S溫度升高;擴大γ相區的元素,則相反。此外幾乎所有合金元素均降低共析點S的含碳量,使S點向左移。不過碳化物形成元素如釩、鈦、鈮等(也包括鎢、鉬),在含量高至一定限度以後,則使S點向右移。③改變γ相區的形狀、大小和位置。這種影響較為復雜,一般在合金元素含量較高時,能使之發生顯著改變。例如鎳或錳含量高時,可使γ相區擴展至室溫以下,使鋼成為單相的奧氏體組織;而矽或鉻含量高時,則可使γ相區縮得很小甚至完全消失,使鋼在任何溫度下都是鐵素體組織(見鐵碳平衡圖)。

  對鋼加熱和冷卻時相變的影響 鋼加熱時的主要固態相變是非奧氏體相向奧氏體相的轉變,即奧氏體化的過程。整個過程都和碳的擴散有關。合金元素中,非碳化物形成元素如鎳、鈷等,降低碳在奧氏體中的激活能,增加奧氏體形成的速度;而強碳化物形成元素如釩、鈦、鎢等,強烈妨礙碳在鋼中的擴散,顯著減慢奧氏體化的過程。

  鋼冷卻時的相變是指過冷奧氏體的分解,包括珠光體轉變(見共析分解)、貝氏體相變及馬氏體相變。由於鋼中大都存在幾種合金元素的相互作用,致使對鋼冷卻時相變的影響也復雜得多。僅舉合金元素對過冷奧氏體等溫轉變曲線的影響為例,大多數合金元素,除鈷和鋁外,均起減緩奧氏體等溫分解的作用(見過冷奧氏體轉變圖),但各類元素所起的作用有所不同。不形成碳化物的(如矽、磷、鎳、銅)和少量的碳化物形成元素(如釩、鈦、鉬、鎢),對奧氏體到向珠光體的轉變和向貝氏體的轉變的影響差異不大,因而使轉變曲線向右推移。

  碳化物形成元素(如釩、鈦、鉻、鉬、鎢)如果含量較多,將使奧氏體向珠光體的轉變顯著推遲,但對奧氏體向貝氏體的轉變的推遲並不顯著,因而使這兩種轉變的等溫轉變曲線從“鼻子”處分離,而形成兩個 C形。當這類元素增加到一定程度時,在這兩個轉變區域的中間還將出現過冷奧氏體的亞穩定區。

  合金元素對馬氏體轉變溫度Ms(起始轉變溫度)和Mn(終瞭轉變溫度)的影響也很顯著,大部分元素均使MsMn點降低,其中以碳的影響最大,其次為錳、釩、鉻等;但鈷和鋁則使MsMn點升高。

  對鋼的晶粒度和淬透性的影響 影響奧氏體晶粒度的因素很多。鋼的脫氧和合金化情況均與“奧氏體本質晶粒度”有關。一般來說,一些不形成碳化物的元素,如鎳、矽、銅、鈷等,阻止奧氏體晶粒長大的作用較弱,而錳、磷則有促進晶粒長大的傾向。碳化物形成元素如鎢、鉬、鉻等,對阻止奧氏體晶粒長大起中等作用。強碳化物形成元素如釩、鈦、鈮、鋯等,強烈地阻止奧氏體晶粒長大,起細化晶粒作用。鋁雖然屬於不形成碳化物元素,但卻是細化晶粒和控制晶粒開始粗化溫度的最常用的元素。

  鋼的淬透性(見淬火)高低主要取決於化學成分和晶粒度。除鈷和鋁等元素外,大部分合金元素溶入固溶體後都不同程度地抑制過冷奧氏體向珠光體和貝氏體的相變,增加獲得馬氏體組織的數量,即提高鋼的淬透性。一些碳化物形成元素,如釩、鈦、鋯、鎢等,如果形成碳化物而固定瞭鋼中的碳,反而會降低淬透性,易使晶粒粗化的元素如錳,能提高淬透性;使晶粒細化的元素如鋁,則降低淬透性。硼是顯著影響淬透性的元素,合金鋼中即使隻含十萬分之一的硼,也能顯著提高鋼的淬透性。但硼的這種影響僅對低、中碳鋼有效,對高碳鋼完全無效。

  對鋼的力學性能和回火性能的影響 鋼的性能取決於鐵的固溶體和碳化物各自性能以及它們相對分佈的狀態。合金元素對鋼的力學性能的影響也與此有關。固溶於鐵素體中的合金元素,起固溶強化作用,使強度和硬度提高,但同時使韌性和塑性相對地降低。其中以磷和矽的固溶強化作用最顯著,而矽對韌性的影響也最嚴重。少量的錳、鉻或鎳,反而對鐵素體的韌性有一定提高。

  調質鋼的韌性-脆性轉變溫度是評價力學性能的一項重要指標。①提高轉變溫度的元素有 B、P、C、Si、Cu、Mo、Cr;②降低轉變溫度的元素有Ni、Mn;③少量時提高、多量時降低轉變溫度的元素有Ti、V;④少量時降低、多量時提高轉變溫度的元素有Al。

  合金鋼的回火穩定性比碳素鋼好,這是由於合金元素在回火時阻礙瞭鋼中原子的擴散,因而在同樣溫度下,起到延遲馬氏體分解和抗回火軟化的作用。對合金鋼的回火穩定性影響比較顯著的為:釩、鎢、鈦、鉻、鉬、鈷、矽等元素;影響不明顯的為:鋁、錳、鎳等元素。可以看到,碳化物形成元素,對回火軟化的延遲作用特別顯著。鈷和矽雖屬不形成碳化物元素,但它們對滲碳體晶核的形成和長大,有強烈的延遲作用,因此,也有延遲回火軟化的作用。

  各種合金元素對回火脆性影響的程度是不同的。定性地說,錳、鉻、氮、磷、釩、銅、鎳等均有促進回火脆性的傾向。鉬的作用較特殊,它加入已有回火脆性的合金鋼(例如含錳、鉻等)中,能顯著地降低回火脆性傾向;若單獨加入普通碳素鋼中,則成為促進回火脆性傾向的元素。鎢的作用與鉬相似,但對回火脆性的影響尚未十分確定。

  對鋼的焊接性和被切削性的影響 焊接性和被切削性是衡量鋼的工藝性能好壞的主要方面。凡能提高淬透性的合金元素均對鋼的焊接性不利。因為在焊縫熱影響區靠近熔合線一側冷卻時易形成馬氏體等硬脆組織,有導致開裂的危險。另一方面,熱影響區靠近熔合線處的晶粒因受高熱容易粗化,因此,合金鋼中含有可使晶粒細化的元素如鈦、釩等是有益的。矽含量高,焊接時會發生嚴重噴濺。硫含量高容易產生熱裂,同時會逸出二氧化硫氣體,在焊接金屬內形成氣孔和疏松。磷含量高容易導致冷裂。

  鋼中加入適量的硫、鉛等元素可改善鋼的被切削性(見易切削鋼)。合金鋼中的合金元素一般會使鋼的硬度增加,因而增高切削抗力,加劇刀具磨損。通過改變鋼的基體組織、夾雜物的種類、數量和形狀可以影響鋼的被切削性。

  對鋼的耐蝕性能的影響 鉻是不銹耐酸鋼和耐熱鋼的主要合金元素。合金鋼中含鉻量若達到12%左右,在鋼的表面便形成致密的鉻的氧化物,使鋼在氧化性介質中的耐蝕性發生突變而大大提高。鉻、鋁、矽等元素,能提高鋼的抗氧化性和抗高溫氣體的腐蝕性能,但過量的鋁和矽則會使鋼的熱塑性變壞。鎳主要用來形成和穩定奧氏體組織,使鋼獲得良好的力學性能、耐蝕性能和工藝性能。鉬能使不銹耐酸鋼很快鈍化,提高對含有氯離子的溶液及其他非氧化性介質的耐蝕能力。鈦、鈮通常用來固定合金鋼中的碳,使它生成穩定的碳化物,以減輕碳對合金鋼耐蝕性能的有害作用。銅和磷配合使用時,可提高鋼的耐大氣腐蝕性能。

  上述的合金元素在鋼中的作用,大都是定性地指單一合金元素的影響。實際上合金鋼中往往存在幾種合金元素,因相互作用和復合影響,效果要復雜得多。

  

參考書目

 冶金工業部鋼鐵研究總院主編:《合金鋼手冊》,上冊,第一分冊,冶金工業出版社,北京,1972。

 A.S.M.,Metals Handbook,9th ed.,Vol.1,1978.

 E.C.Bain & H.W.Paxton,Alloying Elements inSteel,2nd ed.,ASM,1961.

 日本鉄鋼協會編:《鉄鋼便覧》第3版,第Ⅰ卷,丸善株式會社,東京,1981。